RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 77, Issue 3, Pages 354–363 (Mi mzm2498)

This article is cited in 10 papers

Approximation by local trigonometric splines

K. V. Kostousova, V. T. Shevaldinb

a Ural State University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: For the class $W_\infty^{\mathscr L_2}=\{f:f'\in AC,\ \|f''+\alpha^2f\|_\infty\leqslant1\}$ of 1-periodic functions, we use the linear noninterpolating method of trigonometric spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data, i.e., the values of a function from $W_\infty^{\mathscr L_2}$ at the points of a uniform grid. The approximation error is calculated exactly for this class of functions in the uniform metric. It coincides with the Kolmogorov and Konovalov widths.

UDC: 519.65

Received: 01.07.2003

DOI: 10.4213/mzm2498


 English version:
Mathematical Notes, 2005, 77:3, 326–334

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024