RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 77, Issue 6, Pages 803–813 (Mi mzm2537)

This article is cited in 6 papers

Density Modulo 1 of Sublacunary Sequences

R. K. Akhunzhanova, N. G. Moshchevitinb

a M. V. Lomonosov Moscow State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove the existence of real numbers badly approximated by rational fractions whose denominators form a sublacunar sequence. For example, for the ascending sequence $s_n$, $n=1,2,3,\dots$, generated by the ordered numbers of the form $2^i3^j$, $i,j=1,2,3,\dots$, we prove that the set of real numbers $\alpha$, such that $\inf_{n\in\mathbb N}n\|s_n\alpha\|>0$, is a set of Hausdorff dimension 1. The divergence of the series $\sum_{n=1}^\infty\frac1n$ implies that the Lebesgue measure of those numbers is zero.

UDC: 511

Received: 17.02.2004

DOI: 10.4213/mzm2537


 English version:
Mathematical Notes, 2005, 77:6, 741–750

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025