RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 77, Issue 6, Pages 832–843 (Mi mzm2542)

This article is cited in 36 papers

On the Properties of Accretive-Dissipative Matrices

A. Georgea, Kh. D. Ikramovb

a University of Waterloo
b M. V. Lomonosov Moscow State University

Abstract: Let $A$ be a complex $(n\times n)$ matrix, and let $A=B+iC$, $B=B^*$, $C=C^*$ be its Toeplitz decomposition. Then $A$ is said to be (strictly) accretive if $B>0$ and (strictly) dissipative if $C>0$. We study the properties of matrices that satisfy both these conditions, in other words, of accretive-dissipative matrices. In many respects, these matrices behave as numbers in the first quadrant of the complex plane. Some other properties are natural extensions of the corresponding properties of Hermitian positive-definite matrices.

UDC: 512

Received: 03.02.2004
Revised: 13.09.2004

DOI: 10.4213/mzm2542


 English version:
Mathematical Notes, 2005, 77:6, 767–776

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025