RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 78, Issue 2, Pages 171–179 (Mi mzm2574)

This article is cited in 13 papers

Symmetries of Real Hypersurfaces in Complex 3-Space

V. K. Beloshapka

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The main result of the paper consists in the proof of the fact that for any germ of a real analytic hypersurface in complex 3-space the following alternative (dimension conjecture) takes place: either the dimension of the group of holomorphic symmetries of the germ is at most the dimension of that of a nondegenerate hyperquadric (the latter equals 15), or the group is infinite-dimensional. We also discuss mistakes found in A. Ershova's paper.

UDC: 514.764

Received: 05.07.2004
Revised: 10.12.2004

DOI: 10.4213/mzm2574


 English version:
Mathematical Notes, 2005, 78:2, 156–163

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024