RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 78, Issue 4, Pages 493–502 (Mi mzm2608)

This article is cited in 2 papers

Existence Criterion for Estimates of Derivatives of Rational Functions

V. I. Danchenko

Vladimir State University

Abstract: Suppose that $K$ is a compact set in the open complex plane. In this paper, we prove an existence criterion for an estimate of Markov–Bernstein type for derivatives of a rational function $R(z)$ at any fixed point $z_0\in K$. We prove that, for a fixed integer $s$, the estimate of the form $|R^{(s)}(z_0)|\le C(K,z_0,s)n\|R\|_{C(K)}$, where $R$ is an arbitrary rational function of degree $n$ without poles on $K$ and $C$ is a bounded function depending on three arguments $K$, $z_0$, and $s$, holds if and only if the supremum $\omega(K,z_0,s)=\sup\{\operatorname{dist}(z,K)/|z-z_0|^{s+1}\}$ over $z$ in the complement of $K$ is finite. Under this assumption, $C$ is less than or equal to $\mathrm{const}\cdot s!\,\omega(K,z_0,s)$.

UDC: 517.53

Received: 06.02.2004
Revised: 12.10.2004

DOI: 10.4213/mzm2608


 English version:
Mathematical Notes, 2005, 78:4, 456–465

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025