RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 78, Issue 6, Pages 864–869 (Mi mzm2658)

On the Cardinality of the Family of Precomplete Classes in $P_E$

S. S. Marchenkov

M. V. Lomonosov Moscow State University

Abstract: Let $E$ be an infinite set of cardinality $\mathbf m$, and let $P_E$ be the set of all functions defined on $E$. We prove that the cardinality of the family of all classes precomplete in $P_E$ is equal to $2^{2^{\mathbf m}}$. If $C_{\mathbb R}$ is the set of all continuous functions of real variables, then the cardinality of the family of all classes precomplete in $C_{\mathbb R}$ is equal to $2^{2^{\aleph_0}}$.

UDC: 519.716

Received: 18.03.2003

DOI: 10.4213/mzm2658


 English version:
Mathematical Notes, 2005, 78:6, 801–806

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024