RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 79, Issue 4, Pages 546–552 (Mi mzm2723)

This article is cited in 6 papers

Klein polyhedra and relative minima of lattices

O. N. German

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove that in $\mathbb R^3$, the relative minima of almost any lattice belong to the surface of the corresponding Klein polyhedron. We also prove, for almost any lattice in $\mathbb R^3$, that the set of relative minima with nonnegative coordinates coincides with the union of the set of extremal points of the Klein polyhedron and a set of special points belonging to the triangular faces of the Klein polyhedron.

UDC: 511.36+511.9

Received: 04.11.2004

DOI: 10.4213/mzm2723


 English version:
Mathematical Notes, 2006, 79:4, 505–510

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024