RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 79, Issue 5, Pages 700–716 (Mi mzm2742)

Bernstein theorems and transformations of correlation measures in statistical physics

Yu. G. Kondrat'eva, A. M. Chebotarevb

a Bielefeld University
b M. V. Lomonosov Moscow State University, Faculty of Physics

Abstract: We study the class of endomorphisms of the cone of correlation functions generated by probability measures. We consider algebraic properties of the products $(\,\cdot\,{,}\,\star)$ and the maps $K$, $K^{-1}$ which establish relationships between the properties of functions on the configuration space and the properties of the corresponding operators (matrices with Boolean indices): $F(\gamma)\to \widehat F_\cup(\gamma)=\{F(\alpha\cup\beta)\}_{\alpha,\beta\subset\gamma}$. For the operators $\widehat F_\cup(\gamma)$ and $\widehat F_\cap(\gamma)$, we prove conditions which ensure that these operators are positive definite; the conditions are given in terms of complete or absolute monotonicity properties of the function $F(\gamma)$.

UDC: 519.218.5

Received: 08.07.2004
Revised: 01.12.2005

DOI: 10.4213/mzm2742


 English version:
Mathematical Notes, 2006, 79:5, 649–663

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024