Abstract:
We study the class of endomorphisms of the cone of correlation functions generated by probability measures. We consider algebraic properties of the products $(\,\cdot\,{,}\,\star)$ and the maps $K$, $K^{-1}$ which establish relationships between the properties of functions on the configuration space and the properties of the corresponding operators (matrices with Boolean indices): $F(\gamma)\to \widehat F_\cup(\gamma)=\{F(\alpha\cup\beta)\}_{\alpha,\beta\subset\gamma}$. For the operators $\widehat F_\cup(\gamma)$ and $\widehat F_\cap(\gamma)$, we prove conditions which ensure that these operators are positive definite; the conditions are given in terms of complete or absolute monotonicity properties of the function $F(\gamma)$.