RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 74, Issue 3, Pages 416–424 (Mi mzm275)

This article is cited in 17 papers

Jacobi Fields along a Geodesic with Random Curvature

V. G. Lamburt, D. D. Sokolov, V. N. Tutubalin

M. V. Lomonosov Moscow State University

Abstract: A notion of a renewable geodesic on which the curvature is a random process is introduced. It is shown that the modulus of the Jacobi field along such a geodesic grows exponentially. At the same time, the existence with probability 1 of infinitely many conjugate points is demonstrated.

UDC: 514.74

Received: 25.04.2002

DOI: 10.4213/mzm275


 English version:
Mathematical Notes, 2003, 74:3, 393–400

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024