RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 79, Issue 6, Pages 838–853 (Mi mzm2758)

This article is cited in 11 papers

On matrix analogs of Fermat's little theorem

A. V. Zarelua

Moscow State Technological University "Stankin"

Abstract: The theorem proved in this paper gives a congruence for the traces of powers of an algebraic integer for the case in which the exponent of the power is a prime power. The theorem implies a congruence in Gauss' form for the traces of the sums of powers of algebraic integers, generalizing many familiar versions of Fermat's little theorem. Applied to the traces of integer matrices, this gives a proof of Arnold's conjecture about the congruence of the traces of powers of such matrices for the case in which the exponent of the power is a prime power.

UDC: 511.61

Received: 29.03.2005

DOI: 10.4213/mzm2758


 English version:
Mathematical Notes, 2006, 79:5, 783–796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025