RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 79, Issue 6, Pages 908–912 (Mi mzm2763)

On prime numbers of special kind on short intervals

N. N. Mot'kina

Belgorod State University

Abstract: Suppose that the Riemann hypothesis holds. Suppose that
$$ \psi_1(x)=\sum_{\substack{n\le x\\ \{(1/2)n^{1/c}\}<1/2}}\Lambda(n), $$
where $c$ is a real number, $1<c\le 2$. We prove that, for $H>N^{1/2+10\varepsilon}$, $\varepsilon>0$, the following asymptotic formula is valid:
$$ \psi_1(N+H)-\psi_1(N)=\frac H2\biggl(1+O\biggl(\frac1{N^\varepsilon}\biggr)\biggr). $$


UDC: 511

Received: 07.06.2005
Revised: 15.11.2005

DOI: 10.4213/mzm2763


 English version:
Mathematical Notes, 2006, 79:6, 848–853

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024