RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 79, Issue 6, Pages 925–930 (Mi mzm2765)

This article is cited in 3 papers

Typical $\mathbb Z^n$-actions can be inserted only in injective $\mathbb R^n$-actions

V. V. Ryzhikova, S. V. Tikhonovb

a M. V. Lomonosov Moscow State University
b Russian State University of Trade and Economics

Abstract: We study actions of the groups $\mathbb Z^n$ and $\mathbb R^n$ by Lebesgue space automorphisms. We prove that a typical $\mathbb Z^n$-action can be inserted only in injective actions of $\mathbb R^n$, $n\in\mathbb N$. We give a simple proof of the fact that a typical $\mathbb Z^2$-action cannot be inserted in an $\mathbb R$-action.

UDC: 517.987.5+938.5

Received: 17.11.2005

DOI: 10.4213/mzm2765


 English version:
Mathematical Notes, 2006, 79:6, 864–868

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024