RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 80, Issue 1, Pages 11–19 (Mi mzm2774)

This article is cited in 29 papers

Jackson-Type Inequalities and Widths of Function Classes in $L_2$

S. B. Vakarchuk

Ukrainian Academy of Customs

Abstract: The sharp Jackson-type inequalities obtained by Taikov in the space $L_2$ and containing the best approximation and the modulus of continuity of first order are generalized to moduli of continuity of $k$th order $(k=2,3,\dots)$. We also obtain exact values of the $n$-widths of the function classes $F(k,r,\Phi)$ and $\mathcal{F}_k^r (h)$, which are a generalization of the classes $F(1,r,\Phi)$ and $\mathcal{F}^r_1(h)$ studied by Taikov.

Keywords: Jackson-type inequalities, width of function classes, modulus of continuity of $k$th order, periodic function, Bernstein, Kolmogorov, Gelfand $n$-widths.

UDC: 517.5

Received: 09.03.2005
Revised: 25.12.2005

DOI: 10.4213/mzm2774


 English version:
Mathematical Notes, 2006, 80:1, 11–18

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025