RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 74, Issue 3, Pages 446–448 (Mi mzm278)

Remark on a Problem of Rational Approximation

A. P. Starovoitov

Belarusian State University, Faculty of Mathematics and Mechanics

Abstract: We show that for any nonincreasing number sequence $\{a_n\}^{\infty}_{n=0}$ converging to zero, there exists a continuous $2\pi$-periodic function $g$ such that the sequence of its best uniform trigonometric rational approximations $\{R_n(g,C_{2\pi})\}^{\infty}_{n=0}$ and the sequence $\{a_n\}^{\infty}_{n=0}$ have the same order of decay.

UDC: 517.51

Received: 08.01.2003

DOI: 10.4213/mzm278


 English version:
Mathematical Notes, 2003, 74:3, 422–424

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025