RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 80, Issue 2, Pages 240–250 (Mi mzm2805)

This article is cited in 19 papers

Construction of the Asymptotics of the Solutions of the One-Dimensional Schrödinger Equation with Rapidly Oscillating Potential

P. N. Nesterov

P. G. Demidov Yaroslavl State University

Abstract: We obtain asymptotic formulas for the solutions of the one-dimensional Schrödinger equation $-y''+q(x)y=\nobreak 0$ with oscillating potential $q(x)=x^\beta P(x^{1+\alpha})+cx^{-2}$ as $x\to+\nobreak \infty$. The real parameters $\alpha$ and $\beta$ satisfy the inequalities $\beta-\alpha\ge\nobreak -1$, $2\alpha-\beta>\nobreak 0$ and $c$ is an arbitrary real constant. The real function $P(x)$ is either periodic with period $T$, or a trigonometric polynomial. To construct the asymptotics, we apply the ideas of the averaging method and use Levinson's fundamental theorem.

Keywords: Schrödinger equation, averaging method, oscillating potential, Levinson's theorem.

UDC: 517.928

Received: 02.08.2005

DOI: 10.4213/mzm2805


 English version:
Mathematical Notes, 2006, 80:2, 233–243

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025