RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 80, Issue 3, Pages 350–355 (Mi mzm2820)

Extremal Properties of Certain Trigonometric Functions and Chebyshev Polynomials

I. V. Belyakov

Moscow State Institute of Electronics and Mathematics

Abstract: For a wide class of symmetric trigonometric polynomials, the minimal deviation property is established. As a corollary, the extremal property is proved for the components of the Chebyshev polynomial mappings corresponding to symmetric algebras $A_\alpha$.

Keywords: Chebyshev and trigonometric polynomials, minimal deviation property, symmetric algebras, complex Lie algebra.

UDC: 517

Received: 02.11.1998

DOI: 10.4213/mzm2820


 English version:
Mathematical Notes, 2006, 80:3, 339–384

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025