RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 80, Issue 3, Pages 356–366 (Mi mzm2821)

This article is cited in 11 papers

Spectrum and Pseudospectrum of non-self-adjoint Schrödinger Operators with Periodic Coefficients

S. V. Galtsev, A. I. Shafarevich

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider the pseudospectrum of the non-self-adjoint operator
$$ \mathfrak D=-h^2\frac{d^2}{dx^2}+iV(x), $$
where $V(x)$ is a periodic entire analytic function, real on the real axis, with a real period $T$. In this operator, $h$ is treated as a small parameter. We show that the pseudospectrum of this operator is the closure of its numerical image, i.e., a half-strip in $\mathbb C$. In this case, the pseudoeigenfunctions, i.e., the functions $\varphi(h,x)$ satisfying the condition
$$ \|\mathfrak D\varphi-\lambda\varphi\|=O(h^N), \qquad \|\varphi\|=1, \quad N\in\mathbb N, $$
can be constructed explicitly. Thus, it turns out that the pseudospectrum of the operator under study is much wider than its spectrum.

Keywords: spectrum, pseudospectrum, Schrödinger operator, periodicity condition, periodic entire analytic function, non-self-adjoint operator, Riemann surface.

UDC: 517.984.55+514.84

Received: 14.12.2005
Revised: 16.03.2006

DOI: 10.4213/mzm2821


 English version:
Mathematical Notes, 2006, 80:3, 345–354

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025