RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 80, Issue 3, Pages 403–412 (Mi mzm2826)

This article is cited in 2 papers

Similarity invariants for matrices over a commutative Artinian chain ring

V. L. Kurakin


Abstract: Suppose that $R$ is a commutative Artinian chain ring, $A$ is an $m\times m$ matrix over $R$, and $S$ is a discrete valuation ring such that $R$ is a homomorphic image of $S$. We consider $m$ ideals in the polynomial ring over $S$ that are similarity invariants for matrices over $R$, i.e., these ideals coincide for similar matrices. It is shown that the new invariants are stronger than the Fitting invariants, and that new invariants solve the similarity problem for $2\times 2$ matrices over $R$.

Keywords: commutative Artinian chain ring, discrete valuation ring, polynomial ring, ideal, similarity invariants, Fitting invariants.

UDC: 512

Received: 13.05.2005
Revised: 24.01.2006

DOI: 10.4213/mzm2826


 English version:
Mathematical Notes, 2006, 80:3, 387–395

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025