RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 74, Issue 6, Pages 866–876 (Mi mzm313)

A Geometric Bijection for $xy$-Convex Curves and Convex Polyominoes

A. A. Panov

Moscow State University of Geodesy and Cartography

Abstract: A connected subset of ${\mathbb R}^2$ consisting of unit squares with integral vertices is called a convex polyomino or is simply said to be $xy$-convex if it intersects any horizontal or vertical line exactly in one closed interval. In this paper, a geometric representation for xy-convex sets is described, allowing us to obtain, by elementary combinatorial methods, known formulas for the number of convex polyominoes contained in a rectangle of given size.

UDC: 514.17, 519.1

Received: 17.04.2002

DOI: 10.4213/mzm313


 English version:
Mathematical Notes, 2003, 74:6, 819–828

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024