RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 71, Issue 4, Pages 483–495 (Mi mzm360)

On Finite Groups with Restrictions on Centralizers

V. A. Antonova, I. A. Tyurinaa, A. P. Cheskidovb

a South Ural State University
b Indiana University

Abstract: Denote by $w(n)$ the number of factors in a representation of a positive integer $n$ as a product of primes. If $H$ is a subgroup of a finite group $G$, then we set $w(H)=w(|H|)$ and $v(G)=\max \{w(C(g))\mid g\in G\setminus Z(G)\}$. In the present paper we present the complete description of groups with nontrivial center that satisfy the condition $v(G)=4$.

UDC: 512.54

Received: 23.11.2000

DOI: 10.4213/mzm360


 English version:
Mathematical Notes, 2002, 71:4, 443–454

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024