RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 3, Pages 348–360 (Mi mzm3678)

Small set in a large box

E. Kopeckáab

a Johannes Kepler University Linz
b Mathematical Institute, Academy of Sciences of the Czech Republic

Abstract: Let $K\subset\mathbb R^d$ be a compact convex set which is an intersection of half-spaces defined by at most two coordinates. Let $Q$ be the smallest axes-parallel box containing $K$. We show that as the dimension $d$ grows, the ratio $\operatorname{diam}Q/\operatorname{diam}K$ can be arbitrarily large. We also give examples of compact sets in Banach spaces, which are not contained in any compact contractive set.

Keywords: convex compact subset of $\mathbb R^d$, axes-parallel box, contractive set, graph, random hypergraph.

UDC: 519

Received: 27.06.2006

DOI: 10.4213/mzm3678


 English version:
Mathematical Notes, 2007, 81:3, 308–317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024