RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 3, Pages 405–416 (Mi mzm3682)

The $\pi$-$\pi$-Theorem for Manifold Pairs

Yu. V. Muranova, D. Repovšb, M. Cenceljb

a Vitebsk State University named after P. M. Masherov
b University of Ljubljana

Abstract: The surgery obstruction of a normal map to a simple Poincaré pair $(X,Y)$ lies in the relative surgery obstruction group $L_*(\pi_1(Y)\to\pi_1(X))$. A well-known result of Wall, the so-called $\pi$-$\pi$-theorem, states that in higher dimensions a normal map of a manifold with boundary to a simple Poincaré pair with $\pi_1(X)\cong\pi_1(Y)$ is normally bordant to a simple homotopy equivalence of pairs. In order to study normal maps to a manifold with a submanifold, Wall introduced the surgery obstruction groups $LP_*$ for manifold pairs and splitting obstruction groups $LS_*$. In the present paper, we formulate and prove for manifold pairs with boundaries results similar to the $\pi$-$\pi$-theorem. We give direct geometric proofs, which are based on the original statements of Wall's results and apply obtained results to investigate surgery on filtered manifolds.

Keywords: surgery obstruction groups, surgery on manifold pairs, normal maps, homotopy triangulation, splitting obstruction groups, $\pi$-$\pi$-theorem.

UDC: 513.83+515.1

Received: 29.06.2005
Revised: 10.03.2006

DOI: 10.4213/mzm3682


 English version:
Mathematical Notes, 2007, 81:3, 356–364

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025