RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 4, Pages 507–514 (Mi mzm3693)

This article is cited in 1 paper

The Buffer Phenomenon in One-Dimensional Piecewise Linear Mapping in Radiophysics

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study the problem of attractors of the two-dimensional mapping
$$ (u,v)\to(v,-(1-\mu)u-F(v)),\qquad F(v)=\begin{cases} \hphantom{-}q_1&\text{for }v>0, \\ \hphantom{-}0&\text{for }v=0, \\ -q_2&\text{for }v<0, \end{cases} $$
where $0<\mu\ll1$ and $q_1,q_2>0$. This mapping is the mathematical model of a self-excited oscillator with relay amplifier and a part of the long transmission line without distortions in the feedback circuit. We prove that, in the system under study, there coexist stable cycles with arbitrarily large periods as the parameter $\mu$ decreases properly. We also show that the total number of these cycles increases without bound as $\mu\to0$, i.e., the buffer phenomenon is realized.

Keywords: feedback circuit, boundary-value problem, attractor, stable (unstable) cycle, self-excited oscillator, buffer phenomenon, Lyapunov stability.

UDC: 517.926

Received: 30.03.2005
Revised: 09.02.2006

DOI: 10.4213/mzm3693


 English version:
Mathematical Notes, 2007, 81:4, 449–455

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024