RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 5, Pages 724–732 (Mi mzm3716)

On Bordisms of Real Algebraic $M$-Varieties

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: Any morphism of nonsingular complete real algebraic varieties $F\colon Y\to X$ determines a holomorphic mapping of the sets of complex points $F_{\mathbb C}\colon Y(\mathbb C)\to X(\mathbb C)$ as well as a differentiable mapping of the sets of real points $F_{\mathbb R}\colon Y(\mathbb R)\to X(\mathbb R)$. These two mappings determine classes of nonoriented bordisms $[F_{\mathbb C}]\in\operatorname{MO}_{2m}(X(\mathbb C))$, $[F_{\mathbb R}]\in\operatorname{MO}_m(X(\mathbb R))$, where $m=\dim Y$. The paper describes relationship between these two classes of bordisms.

Keywords: real holomorphic variety, real $M$-variety, nonoriented bordism, cohomology operations, Harnack–Thom inequality, equivariant bordism, Leray spectral sequence.

UDC: 512.7

Received: 12.01.2004
Revised: 24.08.2006

DOI: 10.4213/mzm3716


 English version:
Mathematical Notes, 2007, 81:5, 649–655

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025