RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 6, Pages 838–841 (Mi mzm3733)

On the Brauer Group of a Two-Dimensional Local Field

M. A. Dubovitskaya

Institute for the History of Science and Technilogy

Abstract: The two-dimensional local field $K=F_q((u))((t))$, $\operatorname{char}K=p$, and its Brauer group $\operatorname{Br}(K)$ are considered. It is proved that, if $L=K(x)$ is the field extension for which we have $x^p-x=ut^{-p}=:h$, then the condition that $(y,f\,|\,h]_K=0$ for any $y\in K$ is equivalent to the condition $f\in\operatorname{Im}(\operatorname{Nm}(L^*))$.

Keywords: two-dimensional local field, Brauer group, field extension, local field.

UDC: 512.625.7

Received: 27.12.2005

DOI: 10.4213/mzm3733


 English version:
Mathematical Notes, 2007, 81:6, 753–756

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024