RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 6, Pages 867–878 (Mi mzm3737)

This article is cited in 8 papers

Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds

A. G. Losev, Yu. S. Fedorenko

Volgograd State University

Abstract: In this paper, we consider the generalized solutions of the inequality
$$ -\operatorname{div}(A(x,u,\nabla u)\nabla u)\ge F(x,u,\nabla u)u^q,\qquad q>1, $$
on noncompact Riemannian manifolds. We obtain sufficient conditions for the validity of Liouville's theorem on the triviality of the positive solutions of the inequality under consideration. We also obtain sharp conditions for the existence of a positive solution of the inequality $-\Delta u\ge u^q$, $q>1$, on spherically symmetric noncompact Riemannian manifolds.

Keywords: quasilinear elliptic inequality, Riemannian manifold, theorem of Liouville type, Lipschitz function, quasisimilar manifold, Laplace–Beltrami operator.

UDC: 517.95

Received: 22.12.2005

DOI: 10.4213/mzm3737


 English version:
Mathematical Notes, 2007, 81:6, 778–787

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024