RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 6, Pages 803–815 (Mi mzm3743)

This article is cited in 13 papers

Optimal Reconstruction of the Solution of the Wave Equation from Inaccurate Initial Data

N. D. Vysk, K. Yu. Osipenko

Moscow State Aviation Technological University

Abstract: In the present paper, we consider the problem of the optimal reconstruction of the solution of the wave equation from the approximate values of the Fourier coefficients of the function specifying the initial form of the string. For an operator defined on the weight space of vectors from $l_2$, we present the solution of the more general problem of reconstruction from the approximate values of the coordinates of these vectors.

Keywords: wave equation, reconstruction problem, information operator, Fourier coefficient, Lagrange function, Lagrange multipliers, the space $l_2$.

UDC: 517.5

Received: 09.02.2006

DOI: 10.4213/mzm3743


 English version:
Mathematical Notes, 2007, 81:6, 723–733

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024