This article is cited in
11 papers
Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces
M. A. Prokhorovich Belarusian State University
Abstract:
Let
$(X,\mu,d)$ be a space of homogeneous type, where
$d$ and
$\mu$ are a metric and a measure, respectively, related to each other by the doubling condition with
$\gamma>0$. Let
$W^p_\alpha(X)$ be generalized Sobolev classes, let
$\operatorname{Cap}_{\alpha,p}$ (where
$p>1$ and
$0<\alpha\le 1$) be the corresponding capacity, and let
$\dim_H$ be the Hausdorff dimension. We show that the capacity
$\operatorname{Cap}_{\alpha,p}$ is related to the Hausdorff dimension and also prove that, for each function
$u\in W^p_\alpha(X)$,
$p>1$,
$0<\alpha<\gamma/p$, there exists a set
$E\subset X$ such that
$\dim_H(E)\le\gamma-\alpha p$, the limit
$$
\lim_{r\to +0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^*(x)
$$
exists for each
$x\in X\setminus E$, and moreover
$$
\lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^*(x)|^q\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}.
$$
Keywords:
Sobolev class, Lebesgue set, capacity, Hausdorff dimension, metric space, Borel measure.
UDC:
517.5
Received: 17.05.2006
Revised: 06.12.2006
DOI:
10.4213/mzm3757