RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 82, Issue 1, Pages 99–107 (Mi mzm3757)

This article is cited in 11 papers

Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces

M. A. Prokhorovich

Belarusian State University

Abstract: Let $(X,\mu,d)$ be a space of homogeneous type, where $d$ and $\mu$ are a metric and a measure, respectively, related to each other by the doubling condition with $\gamma>0$. Let $W^p_\alpha(X)$ be generalized Sobolev classes, let $\operatorname{Cap}_{\alpha,p}$ (where $p>1$ and $0<\alpha\le 1$) be the corresponding capacity, and let $\dim_H$ be the Hausdorff dimension. We show that the capacity $\operatorname{Cap}_{\alpha,p}$ is related to the Hausdorff dimension and also prove that, for each function $u\in W^p_\alpha(X)$, $p>1$, $0<\alpha<\gamma/p$, there exists a set $E\subset X$ such that $\dim_H(E)\le\gamma-\alpha p$, the limit
$$ \lim_{r\to +0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^*(x) $$
exists for each $x\in X\setminus E$, and moreover
$$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^*(x)|^q\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}. $$


Keywords: Sobolev class, Lebesgue set, capacity, Hausdorff dimension, metric space, Borel measure.

UDC: 517.5

Received: 17.05.2006
Revised: 06.12.2006

DOI: 10.4213/mzm3757


 English version:
Mathematical Notes, 2007, 82:1, 88–95

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025