RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 1, Pages 39–49 (Mi mzm3764)

This article is cited in 4 papers

Regularized Traces of Higher-Order Singular Differential Operators

A. I. Kozko, A. S. Pechentsov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider singular differential operators of order $2m$, $m\in\mathbb N$, with discrete spectrum in $L_2[0,+\infty)$. For self-adjoint extensions given by the boundary conditions $y(0)=y''(0)=\dotsb=y^{(2m-2)}(0)=0$ or $y'(0)=y'''(0)=\dotsb=y^{(2m-1)}(0)=0$, we obtain regularized traces. We present the explicit form of the spectral function, which can be used for calculating regularized traces.

Keywords: singular differential operator, regularized trace, Hilbert space, spectral function, Sturm–Liouville problem, self-adjoint extension, Green function.

UDC: 517.94

Received: 30.03.2006

DOI: 10.4213/mzm3764


 English version:
Mathematical Notes, 2008, 83:1, 37

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025