RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 4, Pages 545–551 (Mi mzm3770)

This article is cited in 26 papers

On Families of Complex Lines Sufficient for Holomorphic Extension

A. M. Kytmanov, S. G. Myslivets

Krasnoyarsk State University

Abstract: It is shown that the set $\mathfrak L_\Gamma$ of all complex lines passing through a germ of a generating manifold $\Gamma$ is sufficient for any continuous function $f$ defined on the boundary of a bounded domain $D\subset\mathbb C^n$ with connected smooth boundary and having the holomorphic one-dimensional extension property along all lines from $\mathfrak L_\Gamma$ to admit a holomorphic extension to $D$ as a function of many complex variables.

Keywords: holomorphic extension property, family of complex lines, Hartogs' theorem, Bochner–Martinelli integral, Sard's theorem, Cauchy–Riemann condition.

UDC: 517.55

Received: 03.07.2006
Revised: 26.03.2007

DOI: 10.4213/mzm3770


 English version:
Mathematical Notes, 2008, 83:4, 500–505

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025