RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 82, Issue 2, Pages 262–271 (Mi mzm3787)

This article is cited in 15 papers

Asymptotics of the Zeros of Degenerate Hypergeometric Functions

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: We find the asymptotics of the zeros of the degenerate hypergeometric function (the Kummer function) $\Phi(a,c;z)$ and indicate a method for numbering all of its zeros consistent with the asymptotics. This is done for the whole class of parameters $a$ and $c$ such that the set of zeros is infinite. As a corollary, we obtain the class of sine-type functions with unfamiliar asymptotics of their zeros. Also we prove a number of nonasymptotic properties of the zeros of the function $\Phi$.

Keywords: degenerate hypergeometric function (Kummer function), asymptotics of zeros, sine-type function, Kummer's formula, Laplace transform, entire function.

UDC: 517.547.28

Received: 15.11.2005

DOI: 10.4213/mzm3787


 English version:
Mathematical Notes, 2007, 82:2, 229–237

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024