RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 82, Issue 3, Pages 426–440 (Mi mzm3854)

This article is cited in 8 papers

Comparison of Linear Differential Operators

R. M. Trigub

Donetsk National University

Abstract: In this paper, we study the question of the existence of the inequality
$$ \|Q(D)f\|_{L_q}\le\gamma_0\|P(D)f\|_{L_p}, $$
where $P$ and $Q$ are algebraic polynomials, $D=d/dx$, and $\gamma_0$ is independent of the function $f$. We obtain criteria (necessary and simultaneously sufficient conditions) for the existence of such inequalities for functions on the circle, on the whole line, and on the semiaxis. Besides, for the semiaxis, we obtain an inequality for $q=\infty$ and any $p\ge1$ with the smallest constant $\gamma_0$.

Keywords: linear differential operator, algebraic polynomial, Kolmogorov multiplicative inequality, Fourier series, Schoenberg spline, Hölder's inequality, Minkowski's inequality.

UDC: 517.5

Received: 27.02.2006
Revised: 16.10.2006

DOI: 10.4213/mzm3854


 English version:
Mathematical Notes, 2007, 82:3, 380–394

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024