RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 6, Pages 815–824 (Mi mzm3882)

This article is cited in 7 papers

The Regev Conjecture and Cocharacters for Identities of Associative Algebras of PI-exponent 1 and 2

A. S. Gordienko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A result confirming the Regev conjecture for the codimension of associative algebras with unit which are of PI-exponent 2 is obtained. It is proved that the sequence of multiplicities of irreducible summands in proper cocharacters of algebras of PI-exponent 2 is of period 2, beginning with some index, whereas this sequence is constant for the ordinary cocharacters of the algebras of PI-exponent 1.

Keywords: associative algebra, free associative algebra, PI-exponent, algebra of PI-exponent 2, irreducible cocharacter, Young tableau, algebra of polynomial growth.

UDC: 512.552.4

Received: 11.04.2007
Revised: 25.09.2007

DOI: 10.4213/mzm3882


 English version:
Mathematical Notes, 2008, 83:6, 744–752

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025