RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1993 Volume 53, Issue 1, Pages 89–94 (Mi mzm3923)

This article is cited in 15 papers

Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations

A. I. Prilepko, A. B. Kostin

Moscow Engineering Physics Institute (State University)

Abstract: In a Banach space $E$ with reproducing cone $E_+$ consider the operator $B$ defined by the formula $Bf=l(uu_t)$, where $u(t)$ is a solution of the Cauchy problem $u_t-Au=\varPhi (t)f$, $t\in [0,T]$, $u(0)=0$, and the expression $l(u)$ has one of the following forms: $l(u)=u(t_1)$, $0<t_1\leqslant T_s$, or $l(u)=\int _0^T\nu (\tau)u(\tau )\,d\tau$ with $\nu\in L_1(0,T)$, $\nu\geqslant0$ on $[0,T]$. We prove the estimate $r(B)<1$.
We obtain this estimate under the conditions that the $C_0$-semigroup generated by the operator $A$ is positive, compact, and of negative exponential type, and the operator function $\varPhi\in C^1([0,T];\mathscr L (E))$ is such that $l(\varPhi)=I$ and $\varPhi(t)\geqslant0$, $\varPhi'(t)\geqslant0$ on $[0,t]$. Correct solvability of the corresponding inverse problem follows from this estimate.

UDC: 517.958

Received: 28.02.1992


 English version:
Mathematical Notes, 1993, 53:1, 63–66

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025