Abstract:
We consider a multicriteria combinatorial problem with majority optimality principle whose particular criteria are of the form MINSUM, MINMAX, and MINMIN. We obtain a lower attainable bound for the radius of quasistability of such a problem in the case of the Chebyshev norm on the space of perturbing parameters of the vector criterion. We give sufficient conditions for the quasistability of the problem; these are also necessary in the case of linear special criteria.