RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 72, Issue 2, Pages 269–282 (Mi mzm421)

This article is cited in 4 papers

Critical $\Omega$-Fiber Formations of Finite Groups

M. M. Sorokina, N. V. Silenok

I. G. Petrovsky Bryansk State Pedagogical University

Abstract: Let $\mathfrak H$ be a class of finite groups. An $\Omega$-fiber formation $\mathfrak F$ of finite groups with direction $\varphi $ is said to be a minimal $\Omega$-fiber non-$\mathfrak H$-formation with direction $\varphi $, or briefly an $\mathfrak H_\Omega $-critical formation, if $\mathfrak F\nsubseteq \mathfrak H$, but any proper $\Omega$-fiber subformation with direction $\varphi $ in $\mathfrak F$ belongs to the class $\mathfrak H$. In the paper, a complete description of the structure of minimal $\Omega$-fiber non-$\mathfrak H$-formations of finite groups of two different directions is given.

UDC: 512.542

Received: 28.07.2001

DOI: 10.4213/mzm421


 English version:
Mathematical Notes, 2002, 72:2, 241–252

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024