RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 87, Issue 1, Pages 3–12 (Mi mzm4347)

This article is cited in 3 papers

On Mappings Related to the Gradient of the Conformal Radius

L. A. Aksent'ev, A. N. Akhmetova

Kazan State University, Faculty of Mechanics and Mathematics

Abstract: We establish a criterion for the gradient $\nabla R(D,z)$ of the conformal radius of a convex domain $D$ to be conformal: the boundary $\partial D$ must be a circle. We obtain estimates for the coefficients $K(r)$ for the $K(r)$-quasiconformal mappings $\nabla R(D,z)$, $D(r)\subset D$, $0<r<1$, and supplement the results of Avkhadiev and Wirths concerning the structure of the boundary under diffeomorphic mappings of the domain $D$.

Keywords: conformal radius, gradient of the conformal radius, coefficient of quasiconformality, convex mapping, astroid, cycloid, hypocycloid.

UDC: 517.546

Received: 10.12.2007
Revised: 29.06.2009

DOI: 10.4213/mzm4347


 English version:
Mathematical Notes, 2010, 87:1, 3–11

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024