RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 72, Issue 3, Pages 448–454 (Mi mzm435)

This article is cited in 16 papers

Characterization of Normal Traces on Von Neumann Algebras by Inequalities for the Modulus

A. I. Stolyarov, O. E. Tikhonov, A. N. Sherstnev

Kazan State University

Abstract: It is proved that if a normal semifinite weight $\varphi $ on a von Neumann algebra $\mathscr M$ satisfies the inequality $\varphi (|a_1+a_2|)\le \varphi (|a_1|)+\varphi (|a_2|)$ for any selfadjoint operators $a_1,a_2$ in $\mathscr M$ , then this weight is a trace. Several similar characterizations of traces among the normal semifinite weights are proved. In particular, Gardner's result on the characterization of traces by the inequality $|\varphi (a)|\le \varphi (|a|)$ is refined and reinforced.

UDC: 517.986+512.64

Received: 25.08.2001

DOI: 10.4213/mzm435


 English version:
Mathematical Notes, 2002, 72:3, 411–416

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024