RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 75, Issue 3, Pages 405–420 (Mi mzm44)

This article is cited in 20 papers

Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: We completely solve the problem of finding the number of positive and nonnegative roots of the Mittag-Leffler type function
$$ E_\rho(z;\mu)=\sum_{n=0}^\infty \frac{z^n}{\Gamma(\mu+n/\rho)}, \qquad \rho>0, \qquad \mu\in\mathbb C, $$
for $\rho>1$ and $\mu\in\mathbb R$. We prove that there are no roots in the left angular sector $\pi/\rho\le|\arg z|\le\pi$ for $\rho>1$ and $1\le\mu<1+1/\rho$. We consider the problem of multiple roots; in particular, we show that the classical Mittag-Leffler function $E_n(z;1)$ of integer order does not have multiple roots.

UDC: 517.5

Received: 24.10.2002

DOI: 10.4213/mzm44


 English version:
Mathematical Notes, 2004, 75:3, 372–386

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024