RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 2, Pages 199–209 (Mi mzm4416)

This article is cited in 10 papers

Comonotone Approximation of Periodic Functions

G. A. Dzyubenkoa, M. G. Pleshakovb

a International Mathematical Centre
b Saratov State University named after N. G. Chernyshevsky

Abstract: Suppose that a continuous $2\pi$-periodic function $f$ on the real axis $\mathbb R$ changes its monotonicity at different ordered fixed points $y_i\in [-\pi,\pi)$, $i=1,\dots,2s$, $s\in\mathbb N$. In other words, there is a set $Y:=\{y_i\}_{i\in\mathbb Z}$ of points $y_i=y_{i+2s}+2\pi$ on $\mathbb R$ such that, on $[y_i,y_{i-1}]$, $f$ is nondecreasing if $i$ is odd and nonincreasing if $i$ is even. For each $n\ge N(Y)$, we construct a trigonometric polynomial $P_n$ of order $\le n$ changing its monotonicity at the same points $y_i\in Y$ as $f$ and such that
$$ \|f-P_n\|\le c(s)\omega_2\biggl(f,\frac{\pi}{n}\biggr), $$
where $N(Y)$ is a constant depending only on $Y$, $c(s)$ is a constant depending only on $s$, $\omega_2(f,\,\cdot\,)$ is the modulus of continuity of second order of the function $f$, and $\|\cdot\|$ is the $\max$-norm.

Keywords: $2\pi$-periodic function, comonotone approximation, trigonometric polynomial, Jackson kernel, Whitney's inequality.

UDC: 517.5

Received: 28.09.2005

DOI: 10.4213/mzm4416


 English version:
Mathematical Notes, 2008, 83:2, 180–189

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024