RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 85, Issue 2, Pages 163–179 (Mi mzm4444)

This article is cited in 7 papers

“Splashes” in Fredholm Integro-Differential Equations with Rapidly Varying Kernels

A. A. Bobodzhanov, V. F. Safonov

Moscow Power Engineering Institute (Technical University)

Abstract: We consider a singularly perturbed Fredholm integro-differential equation with a rapidly varying kernel. We derive an algorithm for constructing regularized asymptotic solutions. It is shown that, given a rapidly decreasing multiplier of the kernel, the original problem does no involve the spectrum (i.e., it is solvable for any right-hand side).

Keywords: integro-differential equation, splash function, Fredholm operator, Volterra operator, regularization of an integral, Lagrange–Sylvester polynomial, boundary layer.

UDC: 517.968

Received: 16.11.2007
Revised: 04.06.2008

DOI: 10.4213/mzm4444


 English version:
Mathematical Notes, 2009, 85:2, 153–167

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024