Abstract:
In the Hardy space $H_{p,\rho }$ ($p\ge 1$, $0<\rho \le 1$, $H_{p,1}\equiv H_p$) we develop best linear approximation methods (previously studied by Taikov and Ainulloev) for the classes $W(r,\Phi ,\mu )$ of analytic functions on the unit disk and calculate the exact values of linear, Gelfand, and informational $n$-widths of these classes.