RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 72, Issue 5, Pages 665–669 (Mi mzm454)

This article is cited in 19 papers

Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods

S. B. Vakarchuk

Ukrainian Academy of Customs

Abstract: In the Hardy space $H_{p,\rho }$ ($p\ge 1$, $0<\rho \le 1$, $H_{p,1}\equiv H_p$) we develop best linear approximation methods (previously studied by Taikov and Ainulloev) for the classes $W(r,\Phi ,\mu )$ of analytic functions on the unit disk and calculate the exact values of linear, Gelfand, and informational $n$-widths of these classes.

UDC: 517.5

Received: 12.09.2001

DOI: 10.4213/mzm454


 English version:
Mathematical Notes, 2002, 72:5, 615–619

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025