RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1992 Volume 52, Issue 1, Pages 3–8 (Mi mzm4647)

This article is cited in 4 papers

Estimating the diameter of one class of functions in $L_2$

A. A. Abilov

Daghestan State University

Abstract: Let
\begin{gather*} f(x)\in L_2[-1,1], \quad \|f\|=\sqrt{\int^1_{-1}|f(x)|^z\,dx}, \\ f_h(x)=\frac1\pi\int_0^{\pi}f(x\cos h+\sqrt{1-x^2}\sin h\cos\pi)\,d\theta, \quad h>0, \\ \widetilde{\omega}(f^{(r)},t)=\sup_{0<h<t}\|\sqrt{(1-x^2)^r}[f^{(r)}(x)-f_h^{(r)}(x)]\|, \\ \widetilde{W}_{\omega}^r=\{f\in L_2[-1,1]:\widetilde{\omega}(f^{(r)};t)\leqslant c\omega(t)\}, \end{gather*}
where $r=0,1,2,\dots,\omega(t)$ is a given modulus of continuity, and $c>0$ is a constant. The estimate is piroved, where $d_n(\widetilde{W}_{\omega}^r;L_2[-1,1])\asymp n^{-r}\omega(n^{-r})$ ($n>r$) is the Kolmogorov $n$-diameter of the set $\widetilde{W}_{\omega}^r$ in the space $L_2[-1,1]$.

UDC: 517

Received: 18.08.1989


 English version:
Mathematical Notes, 1992, 52:1, 631–635

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024