RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 72, Issue 5, Pages 750–764 (Mi mzm465)

This article is cited in 20 papers

On the Structure of Spaces of Polyanalytic Functions

A.-R. K. Ramazanov

Kaluga Branch of Bauman Moscow State Technical University

Abstract: Suppose that $A_mL_p(D,\alpha)$ is the space of all $m$-analytic functions on the disk $D=\{z:|z|<1\}$ which are $p$th power integrable over area with the weight $(1-|z|^2)^\alpha$, $\alpha >-1$. In the paper, we introduce subspaces $A_kL_p^0(D,\alpha)$, $k=1,2,\dots,m$, of the space $A_mL_p(D,\alpha)$ and prove that $A_mL_p(D,\alpha)$ is the direct sum of these subspaces. These results are used to obtain growth estimates of derivatives of polyanalytic functions near the boundary of arbitrary domains.

UDC: 517.5

Received: 13.02.2001
Revised: 16.10.2001

DOI: 10.4213/mzm465


 English version:
Mathematical Notes, 2002, 72:5, 692–704

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025