RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1992 Volume 52, Issue 1, Pages 32–35 (Mi mzm4651)

This article is cited in 1 paper

On conjectures of Olsson, Brauer, and Alperin

P. G. Gres'

Uzhgorod State University

Abstract: Let $G$ be a finite group, $p$ a prime number, $B$ a $p$-block of the group $G$, $k(B)$ the number of irreducible complex characters of $R$ belonging to $B$, $k_0(B)$ the number of irreducible characters of height zero in $B$, and let $D$ be the defect group of $B$. This article considers the relationship between Brauer's conjecture ($k(B)\leqslant|D|$), Olsson's conjecture ($k_0(B)\leqslant|D/D'|$), and Alperin's conjecture ($k_0(B)=k_0(\widetilde{B}$, where $\widetilde{B}$ is a $p$-block $N_G(D)$ such that $\widetilde{B}^G=B$). In particular, Olsson's conjecture is proved for $p$-blocks for those $p$-solvable groups $G$ for which a Hall $p'$-subgroup of the group $N_G(D)$ is either supersolvable or has odd order.

UDC: 519.44

Received: 26.01.1988


 English version:
Mathematical Notes, 1992, 52:1, 654–657

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024