RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 87, Issue 6, Pages 803–813 (Mi mzm4744)

This article is cited in 4 papers

The Cauchy Problem for the Wave Equation with Lévy Laplacian

S. A. Albeverioa, Ya. I. Belopol'skayab, M. N. Fellerc

a University of Bonn, Institute for Applied Mathematics
b St. Petersburg State University of Architecture and Civil Engineering
c Ukranian Institune of Wood Machining

Abstract: We present the solution of the Cauchy problem (the initial-value problem in the whole space) for the wave equation with infinite-dimensional Lévy Laplacian $\Delta _L$,
$$ \frac{\partial^2 U(t,x)}{\partial t^2}=\Delta_LU(t,x) $$
in two function classes, the Shilov class and the Gâteaux class.

Keywords: wave equation, hyperbolic equation, Lévy Laplacian, Cauchy problem, Shilov function class, Gâteaux function class, Hilbert space, variational derivative.

UDC: 517.958+517.98

Received: 12.11.2009

DOI: 10.4213/mzm4744


 English version:
Mathematical Notes, 2010, 87:6, 787–796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025