RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 6, Pages 880–898 (Mi mzm4839)

This article is cited in 20 papers

On the Distribution of Integer Random Variables Related by a Certain Linear Inequality. III

V. P. Maslova, V. E. Nazaikinskiib

a M. V. Lomonosov Moscow State University, Faculty of Physics
b A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences

Abstract: We consider tuples $\{N_{jk}\}$, $j=1,2,\dots$, $k=1,\dots,q_j$, of nonnegative integers such that
$$ \sum_{j=1}^\infty\sum_{k=1}^{q_j} jN_{jk}\le M. $$
Assuming that $q_j\sim j^{d-1}$, $1<d<2$, we study how the probabilities of deviations of the sums $\sum_{j=j_1}^{j_2}\sum_{k=1}^{q_j} N_{jk}$ from the corresponding integrals of the Bose–Einstein distribution depend on the choice of the interval $[j_1,j_2]$.

Keywords: Bose–Einstein distribution, Legendre transform, random variable, Gram matrix, Euler–Maclaurin formula, strict convexity.

UDC: 519.2+531.19

Received: 14.05.2008

DOI: 10.4213/mzm4839


 English version:
Mathematical Notes, 2008, 83:6, 804–820

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024