RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 6, Pages 923–932 (Mi mzm4841)

This article is cited in 4 papers

Spectral Theory for Operator Matrices Related to Models in Mechanics

C. Trunk

Technische Universität Berlin

Abstract: We derive various properties of the operator matrix
$$ \mathscr A=\begin{vmatrix} 0&I \\ -A_0&-D \end{vmatrix}, $$
where $A_0$ is a uniformly positive operator and $A_0^{-1/2}DA_0^{-1/2}$ is a bounded nonnegative operator in a Hilbert space $H$. Such operator matrices are associated with second-order problems of the form $\ddot z(t)+A_0z(t)+D\dot z(t)=0$, which are used as models for transverse motions of thin beams in the presence of damping.

Keywords: operator matrices, second-order partial differential equations, spectrum, Riesz basis, definitizable operator, Krein space, analytic semigroup.

UDC: 517.958

Received: 20.07.2007

DOI: 10.4213/mzm4841


 English version:
Mathematical Notes, 2008, 83:6, 843–850

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024