RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 87, Issue 2, Pages 233–245 (Mi mzm5188)

This article is cited in 6 papers

Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter

A. B. Kupavskii, A. M. Raigorodskii

M. V. Lomonosov Moscow State University

Abstract: The classical Borsuk problem on partitioning sets into pieces of smaller diameter is considered. A new upper bound for
$$ d_5^3=\sup_{\Phi\subset\mathbb R^3,\operatorname{diam}\Phi=1}\inf\{x\ge0:\Phi=\Phi_1\cup\Phi_2\cup\dots\cup\Phi_5,\operatorname{diam}\Phi_i\le x\} $$
is given, which improves the previous bound obtained by Lassak in 1982.

Keywords: Borsuk's problem, partition of 3D sets, diameter of a set, Lassak's bound, Gale's conjecture, Jung's ball, Helly's theorem, isometry.

UDC: 514.17

Received: 04.06.2008

DOI: 10.4213/mzm5188


 English version:
Mathematical Notes, 2010, 87:2, 218–229

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025