RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 69, Issue 5, Pages 656–665 (Mi mzm529)

This article is cited in 19 papers

Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$

È. M. Galeev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper we obtain estimates of the orders of Kolmogorov widths of the Besov classes $B_{p,\theta}^r(\mathbb T^d)$ of periodic functions of several variables with dominant mixed derivative (defined in the sense of Weyl) in the space $L_q$, $r\in\mathbb R^d$, $1<p,q<\infty$, $0<\theta\le\infty$. The proposed approach to calculating widths can also be used for finding the widths of the Sobolev classes $W_p^r(\mathbb T^d)$ (by embedding them in the Besov classes $B_{p,\theta}^r(\mathbb T^d)$) as well as for calculating some other widths (such as Alexandroff, linear, projective, and orthoprojective widths).

UDC: 517.5

Received: 23.12.1997
Revised: 03.03.2000

DOI: 10.4213/mzm529


 English version:
Mathematical Notes, 2001, 69:5, 605–613

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024